**The angular momentum is one of the most important physics properties, with examples ranging**

**Its footprint expands from quantum physics to general relativity. In spite of this our knowledge of how angular momentum works is quite specific, and we yet to understand how does it apply in a more general space setting. **

**We now explore broader implications of angular momentum with help of the globotoroid model. In this model spheres with closed periodic orbits become spheres with loxodromic orbits that are, as before, defined by the frequency in Hertz (Hz). In the case of the globotoroids, however, the globe may, or may not, contain singularities. If it does, the loxodrome is no-cyclic and it scrolls between the two poles. When the singularities do not exist, the wormhole opens the path between the two poles, which now liberates a loxodrome by allowing it to cycle.**

## **The mathematics for computing angular momentum remains identical as for the periodic orbits. The only distinction now is that radius r is constantly changing. Clearly, for non-cyclic loxodrome physics of angular momentum **

**becomes difficult to explain as r->0, and mass P approaches singularity: this is not very realistic. In contrast, when a loxodrome is cyclic the singularities disappear and wormhole creates an opening for mass P to pass. We have yet to discover what happens with mass when P passes through a wormhole. For now, the globotoroid model tells us that a wormhole can compress mass by huge orders of magnitude, hence making it quite possible for P, in one form or the other, to travel at speeds exceeding that of the speed of light. This is depicted below by letting P represent the yellow worm that shrinks to almost an **

**infinitesimal point mass in the middle of wormhole. At that point the worm travels and spins very fast, and the question is can we still detect it and recognize it as being the worm. Some fairly recent observations suggest that **__gamma ray bursts____,__ that perhaps travel faster than the speed of light, may result from the matter decomposing in a wormhole. This, however, is yet to be empirically verified.

Another advantage of having a cyclic loxodrome is that it can fill the 3D space, which is not possible with a non-cyclic one. To explore these topics further take a look at the following two videos:

__gamma ray bursts__

__,__that perhaps travel faster than the speed of light, may result from the matter decomposing in a wormhole. This, however, is yet to be empirically verified.

Another advantage of having a cyclic loxodrome is that it can fill the 3D space, which is not possible with a non-cyclic one. To explore these topics further take a look at the following two videos: